Energy Density of some Combustibles

Chemical Energy Content of some Fuels in MJkg

Source: adapted from Energy density Extended Reference Table, Wikipedia.

Different fuels have different energy density levels, which can be measured in terms of equivalent energy released through combustion. Energy density is the amount of energy that can be released by a given mass or volume of fuel. It can be measured in gravimetric energy density (per unit of mass) or volumetric energy density (per unit of volume). Gravimetric energy density is relevant when comparing the energy efficiency of fuels. At the same time, volumetric energy density is relevant when comparing transportation modes as storage space (fuel tank) must be present to carry the fuel propelling a vehicle. The higher the energy density, the higher the fuel quality, which is inversely proportional to its chemical complexity. High-quality fuels are gases, while low-quality fuels are solids, with liquids in between. The highest energy density fuel is hydrogen, the simplest chemical component.

Gasoline, which is derived from refining crude oil, contains much more energy than coal (twice the lower grade bituminous) or wood (three times). Liquid natural gas (LNG) is almost entirely composed of methane, while natural gas has about 85% of its mass accounted for by methane. Jet A-1 is the standard fuel used by commercial jet planes. It mostly comprises kerosene and several additives (antifreeze, antioxidant, and antistatic) since the fuel must meet rigorous specifications as it will be exposed to high altitudes and low temperatures. Conversely, Bunker C fuel, the primary fuel used for maritime shipping, can be considered one of the lowest quality fuels in liquid form but suitable for vast ship engines.

Although methane and hydrogen have higher energy density than gasoline, their gaseous form creates storage difficulties. Furthermore, hydrogen must be synthesized, which requires energy. At a conversion rate of 100%, it would require 100 hours to capture the solar energy equivalent of 1 kg of gasoline on a surface of one square meter. Ammonia (NH3) has been advocated as an alternative fuel, particularly for maritime shipping, as it can be stored as a liquid. Still, it has about half the energy density of fossil fuels such as gasoline. One of the most efficient energy storage devices for electricity, the lithium battery, can only hold about the equivalent of 0.5 MJ per kilogram, underlining the challenge of developing electric vehicles. Still, the performance is improving, with some lithium batteries getting close to 1 MJ/kg.