

Jean-Paul Rodrigue

Sixth Edition

Transportation Modes (Part I)

CHAPTER 5

Copyright © 1998-2024, Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University - Galveston.

ecojpr@gmail.com

You may use the figures within for educational purposes only. No modification or redistribution permitted. For more information: <u>https://transportgeography.org/</u>

Usage Conditions

- DO NOT COPY, TRANSLATE OR REDISTRIBUTE THIS DOCUMENT.
- The contents of this document can be freely used for personal or classroom use ONLY.
- Although the material contained in this document is freely available, it is not public domain. Its contents, in whole or in part (including graphics and datasets), cannot be copied and published in ANY form (printed or electronic) without consent.
- If you have accessed this document through a third party (such as a content farm), keep in mind that this party is illegally redistributing this content. Please refer to the true source (<u>https://transportgeography.org/</u>) instead of the third party.
- Permission to use any graphic material herein in any form of publication, such as an article, a book or a conference presentation, on any media must be requested prior to use.
- Information cited from this document should be referred as: Rodrigue, J-P et al. (2024) The Geography of Transport Systems, Texas A&M University, Department of Maritime Business Administration, <u>https://transportgeography.org/</u>.

Table of Contents

- 5.1 Transportation Modes, Modal Competition and Modal Shift
- 5.2 Road Transportation
- 5.3 Maritime Transport

The Geography of R Transport Systems

Jean-Paul Rodrigue

Sixth Edition

Transportation Modes, Modal Competition and Modal Shift

Main Passenger Modal Options

Main Freight Modal Options

Load of the Global Transport System by Mode

	Tons	Tons-km	Revenue (2004)
Road	?	6,000 to 8,500 billion tons- km	\$796 billion
Rail	8,930 million tons	7,773 billion tons-km	\$330 billion
Maritime	6,758 million tons (loaded) 6,787 million tons (unloaded)	44,474 billion tons-km	\$484 billion

Performance Comparison for Selected Freight Modes

VEHICLE	INFRASTRUCTURE	CAPACITY	TRUCK EQUIVALENCY
Barge	(20-25 km/hr) Navigation channels, canals, terminals	1500 Tons / 50-100 TEU 52,500 Bushels 453,600 Gallons	57.7 (865 for 15 barges in tow) 18 to 40 (intermodal)
Hopper car Doublestack rail car	(40 km/hr) Tracks, yards and	100 Tons / 4 to 5.3 TEU 3,500 Bushels 30,240 Gallons	2.0 (intermodal) to 3.8
100 car train unit	terminals	10,000 Tons / 400 to 530 TEU 350,000 Bushels 3,024,000 Gallons	385
Semi-trailer truck	(65-100 km/hr) Roads, parking lots and docking bays	26 Tons / 2.65 TEU 910 Bushels 7,865 Gallons 9,000 for a tanker truck	1
Panamax containership	(20-25 km/hr) Navigation channels, canals, port terminals	5,000 TEU	2,116
VLCC		300,000 tons 2 million barrels of oil	9,330
747-400F	(500-900 km/hr) Air corridors, airfields	100-125 tons (Depending on freight density and range)	5 © GTS

Transport Mode US\$ Cost per ton-mile	Average Speed	Infrastructure Needs		Efficient	Project	Carbon	Market chore	
		En route	Origin, destination	scale	cargo	footprint	Manet Silare	
Airplanes	>\$1	100s of mph	None	Landing strips	<100 tons	Limited	Very large	<10%
Trucks	15-25¢	40-60 mph	Roads	Loading docks	20 - 40 tons	Limited	Large	>50% overland
Rail	3-5¢	>26 mph	Tracks	Stations	>10,000 tons	Yes	Moderate	~20-40% overland
Ships and Barges	<1¢	~12-15 mph	None	Ports and terminals	25,000 - 100,000+ tons	Yes	Small	<5% overland 90%+ over water
Pipelines (fluids only)	~1¢	3-6 mph	Pipe- line	Staging areas, storage tanks	1,000s of tons per day	No	Slight	Dominant for petroleum
Giant Airships	<25¢, possibly as low as 10¢	~90 mph	None	Mooring and transloading sites	30-200+ tons	Yes	Small to none	???

Table 1. Comparing Six Modes of Transport

Evolution of American Road and Rail Traffic Density, 1980-2005 (in millions)

Comparison of the Relative Efficiencies of Rail and Trucking in the United States

Modal Profile of Freight Transportation, United States

Mode	Value	Volume	Service	Distance
Truck	Moderate to high	Loads of less than 50,000 lbs.	On-time performance above 90%.	Driver can go 500 miles per day. 2/3 of tonnage carried over less than 100 miles.
Rail	Moderate to low	Multiple car loads. No weight restrictions.	4 to 7 days delivery time. 60 to 85% on- time performance.	Average haul length between 600 and 800 miles.
Intermodal	Moderate to high	No weight restrictions.	3 days for cross country. On-time performance between truck and rail.	Average haul between 700 and 1,500 miles.
Air	High	Small. Most loads less than 100 lbs.	Normally overnight or second day.	More than 1,300 miles.
Inland Water	Moderate to low	Bulk shipments.	Varies according to segment. Competitive with rail.	Between 250 and 1,600 miles.
Coastal Water	Moderate to low	Containers, general freight and bulk shipments.	Function of distance. Between 2 to 5 days.	Between 500 and 2,000 miles.
International Water	High to low	Mainly containers and bulk shipments.	7 to 10 days trans-Atlantic and trans- Pacific routes.	More than 2,600 miles.
Pipeline	Low	Bulk shipment of liquids and gazes.	According to demand. 0 to 20 mph.	825 miles average distance for crude oil.

Distance, Modal Choice and Transport Costs

Average Length of Haul, Domestic Passenger and Freight Transport, United States, 1960-2019 (in miles)

Distribution of Freight Demand by Mode

Freight Transport Costs in Cents per Ton-Mile

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

6

Freight Transport Revenue per Ton-Mile

Forms of Modal Competition

Modal Competition and Complementarity

Four Travel Options between New York and Boston, 2004

Mode	Price (one way)	Time
LimoLiner (luxury bus)	\$69	4 hours
Acela (Amtrak train)	\$99	3 hours
Greyhound bus	\$30	4 hours
Air Shuttle	\$128	1 hour (plus check in)

Modal Share of Freight Transportation, Selected Countries, 2008 (in % of ton-kms)

Modal Share of Freight Transportation, Selected Countries, 2020 (in % of ton-kms)

Passenger Modal Split by Travel Distance, United States, 1995

Principles of Modal Shift

Modal Competition, Complementarity and Shift along a Corridor

Passenger Transport by Mode, Japan, 1950-2005

Modal Shift in China, 1980-2005

Share of Passengers-km by Mode

Share of Ton-km by Mode

The Geography of R Transport Systems

Jean-Paul Rodrigue

Sixth Edition

Road Transportation

Linearity, Capacity and Surface of Roads

World Main Highway and Primary Road Network

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Road Transport Density Measures, 2000s

European and North American Crossborder Road Networks

	Trans-European Networks (TEN)	North American Corridors
Governance	Assigned by treaty to national governments.	Assumed by promoters; national governments not directly involved
Management	Second level Nomenclature of territorial units for statistics (NUTS-2)	State Departments of Transportation (DOT)
Financing	European Commission. National governments.	Federal governments
Purpose	Pan-European connectivity.	Competitiveness.
	Improving flows.	Trade.
Border	Attention/improvements not always crossborder; could be internal to a country	Borders (international or interstate) are important
		elements
External links	Reaching Central and Eastern Europe	Canada-U.SMexico only

World Automobile Production and Fleet, 1965-2021

Global Motor Vehicle Production per Manufacturer, 1998-2017

Automobile Production, Selected Countries, 1950-2022 (in millions)

The Interstate Highway System

Main Design of Highway Interchanges

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Main Design of Highway Interchanges

Length of the Interstate Highway System and the Chinese Expressway System, 1959-2021

Vehicle Sales, United States, 1931-2021

Distribution of Car Trips by Travelled Distance, United States

Year	Avg. EV Range	Maximum EV Range	
2010	79 miles (127 km)	N/A	
2011	86 miles (138 km)	94 miles (151 km)	
2012	99 miles (159 km)	265 miles (426 km)	
2013	117 miles (188 km)	265 miles (426 km)	
2014	130 miles (209 km)	265 miles (426 km)	
2015	131 miles (211 km)	270 miles (435 km)	
2016	145 miles (233 km)	315 miles (507 km)	
2017	151 miles (243 km)	335 miles (539 km)	
2018	189 miles (304 km)	335 miles (5 <mark>3</mark> 9 km)	
2019	209 miles (336 km)	370 miles (595 km)	
2020	210 miles (338 km)	402 miles (647 km)	
2021	217 miles (349 km)	520 miles* (837 km)	

•Weather: At temperatures below 20°F (-6.7°C), EVs can <u>lose</u> around 12% of their range, rising to **41%** if heating is turned on inside the vehicle.

Car and Light Truck Survivability Rates

Annual Vehicle-Miles Traveled in the United States and Year-over-Year Changes, 1971-2023 8.0%

in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Modal Shares of U.S.-NAFTA-Partner Merchandise Trade by Value and Weight, 2000

Cost Structure of Trucking, United States, 2006

Average Marginal Trucking Costs per Mile, United States, 2008-2020

World Bicycle Production, 1950-2018

Share of Cycling over the Total Amount of Trips, mid 1990s

	0 5	5 10	0 1	5 2	0 2	5 3	0
Japan							
United States							
United Kingdom							
Germany							
Denmark							
Netherlands							
Sweden							
Switzerland							

Share of Cycling over the Total Amount of Trips, Selected Countries, 2015

Trips Made by Bicycle in Selected German Cities (in %)

The Geography of R Transport Systems

Jean-Paul Rodrigue

Sixth Edition

Rail Transportation

World Rail Network and Rail Systems

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Geographical Settings of Rail Lines

Geographical Settings of Rail Lines (Greyscale)

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime E

in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

is not public domain and cannot be published, in whole or in part,

Economic Rationale of Rail Transportation

Market Area	Longest service area for inland transport (average length of 1,300 km). Service both the passengers and freight markets. Intermodal integration favored market segmentation and specialization.
Capacity	A wagon can carry 50 to 100 tons of freight. Economies of scale (unit trains and doublestacking).
Costs	High construction and maintenance costs. High operating costs: labor (60%), locomotives (16%) and fuel & equipment (24%). Shipping costs decrease with distance and load. Transshipments and train assembly increase costs.
Benefits	Accelerated industrialization. Support agricultural and energy supply systems. Intermodal connecting with international trade.
Regulation	Conventionally highly dependent from government subsidies. Government financing, mainly for the sake of national economic imperatives. From regulation to deregulation. Private ownership and operations.

Economic Rationale of Rail Transportation

Length of the Main Rail Gauge Systems, 2008 (in km)

Major Gauges of the Global Rail Systems

World Rail Passenger Traffic, 1980-2010

World High Speed Rail Systems, 2018

Length of High-Speed Rail Network, 2020

World Rail Freight Traffic, 1997-2010

World Rail Freight Traffic, 1980-2018

Rail Freight Traffic, Selected Countries, 1996-2017

World Rail Freight Traffic, 2018

Rail Freight Traffic, Selected Countries, 2018

World Rail Passenger Traffic, 2017

Rail Passenger Traffic, Selected Countries, 2019

Percent of Rail Passenger Traffic to Total Rail Traffic

Passenger Journeys on the British Rail Network, 1921-2007 (millions)

in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.
Spatial Performance of Rail and Road Transportation

Major Segments of the Rail Freight Market

Segment	Description	Commodities	Share of volume
Single Wagon	Customer using a few wagons	Chemicals, Vehicles and Machinery	50 %
Full / Block Train	Customer has enough goods to fill a train	Coal and Steel, Construction materials	35 %
Intermodal	Transportation by container: the container or trailer is lifted on the wagon	Finished goods, Containerized goods	15 %

Operating Revenue of Major North American Railroads, 2007 (million U.S. dollars)

Capital Expenditures as Share of Revenue

Major Intermodal Rail Markets in the United States, 2018

Rail Track Mileage and Number of Class I Rail Carriers, United States, 1830-2020

Commodity Carried by Class I American Railways, 2016

Canadian Crude Oil Exports by Rail, 2012-2020 (in barrels per day)

The North American Intermodal Rail Transport System

Ownership of Major North American Rail Lines, 2021

Market Share of US Intermodal Rail, 2006

Major North American Rail Corridors Improved since 2000

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Average Speed of Class I Railroads, 1945-2022

Rail Freight Volumes Transported in the United States, 1960-2015

Rail Volume and Fuel Consumption, United States, 1980-2008 (1980=100)

American Intermodal Rail Traffic, 1988-2021

Monthly Rail Intermodal Traffic, United States

Composition of the North American Intermodal Rail Fleet

Composition of the TTX Railcar Fleet, 2013

Canadian Intermodal Rail Traffic, 1970-2016

Average Freight Train Length, United States

Types and Functions of Rail Freight Corridors

ТҮРЕ	FUNCTION	EXAMPLE
Short distance (within a gateway / hub)	Modal shift, improved capacity and throughput	Switch carrying; Alameda Corridor; Panama Canal Railway
Hinterland access (between a gateway and its market area)	Expand market area, reduce distribution costs & congestion	Rail shuttles; Satellite terminals; Inland ports
Landbridge (between gateways)	Long-distance container flows, continuity of global commodity chains	North American landbridge; Eurasian landbridge
Circum-hemispheric (between gateways with a maritime segment)	Integrated global transport chains	"Belt and Road Initiative" © GTS

Under Construction

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

The Alameda Rail Corridor

Number of Trains Running Through the Alameda Corridor per Year and Containers Handled by the San Pedro Bay Port Cluster, 2002-2018

Copyright © 1998-2024, Dr. Jean-Paul Rodrigue, Dept. of Maritime Business Administration, Texas A&M University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

San Pedro Bay Port Container Distribution

Direct to rail (national)

Truck to/from near dock (national)

Truck to/from off dock (national)

Truck to/from DC then to rail (national)

Development of High-Speed Train Traffic, Largest Markets, 1964-2019

Restructuring Effects of High-Speed Rail

Comparison Between European, North American and Pacific Asian Railways

Issue	Europe	North America	Pacific Asia
Organisation	Separation of infrastructure from operations (for accountancy purposes)	Separation by region (markets) (private companies and concessions of vertically integrated companies)	Infrastructure and operations publicly owned
Market focus	Passenger oriented	Freight oriented	Passenger oriented
Competition	Strong competition limited by informal national and political regulations	Semi oligopolistic competition according to regions	Limited competition
Operations	Dense network with numerous long and short- distance corridors. Average intermodal train distance ca. 500km. Sea containers and short- sea containers distribution in rail shuttle.	Large network with main long-distance corridors from gateway ports. Average intermodal train distance 1000-1200km (US West) and 2500-3500km (US East). Sea containers distribution in port-hinterland trains.	
Ownership	Infrastructure mainly publicly owned with a few exceptions (e.g. UK). Freight equipment and terminals increasingly privately owned and operated. Close to 90% state owned	Private	Public
Distances	Short to medium	Medium to long	Short to long

Main Advantages of Railway Infrastructure Investment

Group	Benefit	Description
Public sector	Lower highway congestion and maintenance	Potential substitution effect. Each intermodal train can take 280 trucks off the roadways, while each bulk and merchandise train can remove up to 500 trucks. Every passenger train displaces hundreds of automobiles.
	Improved safety and security	Freight railroads are safer than trucks. Railroads have one-fourth the rate of fatalities of trucks for intercity transportation, on a per ton-mile basis.
	Economic growth	Economies of scale provide long distance transport services at a lower cost.
	Environment	On average, railroads are three or more times more fuel efficient than trucks.
Shippers	Lower transit times	Reduced transit times lower shippers' costs by lowering the inventory carrying costs of the transported goods.
	Lower logistics costs	Due to economies of scale, freight rail can provide long-haul transportation services at a lower rate than trucks.
	Improved reliability	Expanded rail capacity lowers the variability in transit time by reducing the uncertainty created from delays. Improved transportation on-time performance lowers manufacturing costs, both from reducing stock-outs and shut-downs, and from the ability to safely maintain lower inventory levels.
Rail operators	Increased ridership or traffic	Expanding freight capacity can increase the revenue of the freight railroads through increased business opportunities.
	Improved reliability	Expanded rail capacity lowers the variability in transit time by reducing the uncertainty created from delays.

Major Oil Pipelines

Oil and Gas Pipelines Mileage in the United States, 1960-2020

2				12		the state of the second		0	1.000	States -		·/		1	4	57	10
1830-1840	1840-1850	1850-1860	1860-1870	1870-1880	1880-1890	1890-1900	1900-1910	1910-1920	1920-1930	1930-1940	1940-1950	1950-1960	1960-197	70 1970-19	30 1980-	1990 1990-2	000 2000-2010
						Norfolk ar	nd Western (N	W) 1838-1982									
	Southern Railway (SOU) 1894-1982											Norfolk					
					New York	Central Railro	oad (NYC) 1831	1-1968						Penn Central			Southern
						Ne	w York, New H	laven and Hart	ford Railroad (I	NH) 1872-1968				Transportation Co.			Deihueu
						Pennsylvania	Railroad (PRR)	1846-1968						(PC) 1968-1976			Kallway
					Delaware,	Lackawanna	and Western R	Railroad (DLW)	1851-1960				Erie Lackawar	nna Railway (EL)			1990-today
					Erie Rail	Iroad (Erie) 18	32-1960						1960	0-1976	Conrail ((R) 1976-1999	
									Ann Arbor Ra	ailroad (AA) 189	95-1976				coman	City 1970-1999	
1					Centr	ral Railroad of	New Jersey (C	NJ) 1839-1976									
1								Lehigh and Hu	idson River Rai	lway (L&HR) 18	82-1976						
						Lehigh	Valley Railroa	d (LV) 1846-191	/6								
						Reading Com	npany (RDG) 18	333-1976	-1	D. I. J. CAL	1000 1007						
11								50 1040 1067	eaboard Air Lin	e Railroad (SAL) 1900-1967			Seaboard Coast Line	(SCL) 1967-		
				C .	Atla	antic Coast Lir	ne Kaliroad (AC	1022 1067						1983	S		
				Ge	orgia Railroad	and Banking	Clinchfin) 1833-1967	P) 1002 1092						В		
							Cincine		Atlanta	& West Point R	ail Road (AWP	1847-1983			D	CSX Transp	ortation (CSXT)
						Weste	rn Railway of A	Alahama (W/RA)	1860-1983	& West Follit	an noau (Avr	11047-1905			*	195	S6-today
	Western Railway of Alabama (WRA) 1860-1983 Chesaneake and Obio Railway (C&O) 1869-1987												io coudy				
	Chesapeake and Ohio Railway (C&O) 1869-1987																
	Chesapeake and Ohio Railway (C&O) 1869-1987 Western Marvland Railway (WW) 1852-1983																
Í.						Baltimore and	d Ohio Railroad	d (B&O) 1830-1	987								
							Missouri Pac	ific Railroad (M	IP) 1851-1980								
								Chicago and	North Western	n (CNW) 1865-1	995						
1									We	stern Pacific Ra	ilroad (WP) 19	03-1983					Union Pacific (UP)
i i								Missouri-Ka	insas-Texas Rai	Iroad (MKT) 18	70-1988						1862-today
								South	nern Pacific (SP) 1865-1996							
							-										
							Atchinson,	, Topeka and Sa	inta Fe Railway	(ATSF) 1859-1	996			_		_	
1								Great	Northern Raily	way (GN) 1890-	1970						Burlington Northern
					cl.:	D	Northern Pag	cific Railway (N	P) 1864-1970					Burling	ton Northern F	tailroad (BN)	and Santa Fe Railway
1 1	Chicago, Burlington and Quincy Railroad (CBQ) 1849-1970 1970-1996 (BN)										(BM2F) 1996-today						
								Spoka	ine, Portland al	nd Seattle Raily	vay (SPS) 1905	-1970	Daileas	d (CTM) 1028	today		
1				1					Ka	near City South	orn Pailway (K	(CS) 1997 toda	tern Kallroa	u (GTW) 1928	louay		
L		SC25 - SC311 - 72							Ka	isas city south	ern Kallway (K	C2) 1991-1009	ly l				

Timeline of railroads' mergers and acquisitions

*SBD: Seaboard System Railroad 1983-1986

Source: Railroads' websites, backward historical analysis based on public data available online

The Geography of R Transport Systems

Jean-Paul Rodrigue

Sixth Edition

Maritime Transport

International Seaborne Trade and Exports of Goods, 1955-2021

Selected Changes in Maritime Shipping, 1980-2020

Domains of Maritime Circulation

Main Maritime Shipping Routes and Chokepoints

Types of Maritime Routes

Length of the Major Inland Waterway Systems

Largest Ships by Category

Types of Maritime Cargo

World Seaborne Trade by Cargo Type, 1970-2021

Composition of the Global Fleet, 1980-2019 (Share of deadweight tons)

Flexibility and Specialization of Major Ship Designs

Vessel Size Groups (in dead weight tons)

The Maritime Transport Life Cycle and Main National Actors

Map 1 Building, ownership, registration and recycling of ships, 2021 (Percentage of world total)

Sources: UNCTADstat (UNCTAD, 2022a), Clarksons Research.

Note: Top three countries in each segment are shown. Building and recycling are estimated deliveries and demolitions during 2021. Registration and ownership figures refer to the beginning of the year 2022.

Operating Costs of Panamax and Post-Panamax Containerships (in USD)

Evolution of Containerships

Evolution of Containerships

Characteristics of Some Historical Containerships

Year	Name	Capacity (TEU)	Yard	Length (m)	Width (m)	Draft (m)	Speed (knots)
1956	Ideal X	58	US	174.2	23.6	8.0	18.0
1968	Elbe Express	730	B&V	171.0	24.5	7.9	20.0
1970	Sealand Navigator	2,361		247.6	27.5	11.1	
1972	Liverpool Bay	2,961	B&V	248.6	32.3	13.0	23.0
1981	Frankfurt Express	3,430	HDW	271.0	32.3	11.5	23.0
1991	Hanover Express	4,407	Samsung	281.6	32.3	13.5	23.0
1995	APL China	4,832	HDW	262.0	40.0	12.0	24.6
1996	Regina Maersk	6,700	Odense	302.3	42.8	12.2	24.6
1998	Sovereign Maersk	8,200	Odense	332.0	42.8	14.5	24.7
2001	Hamburg Express	7,506	Hyundai	304.0	42.8	14.5	25.0
2003	OOCL Shenzhen	8,063	Samsung	319.0	42.8	14.5	25.2
2005	MSC Pamela	9,200	Samsung	321.0	45.6	15.0	25.0
2006	Emma Maersk	14,700	Odense	397.0	56.0	16.0	24.5
2009	MSC Beatrice	13,798	Samsung	366.1	51.2	15.0	25.2
2012	MSC Marco Polo	16,000	Daewoo	396.0	53.6	16.0	25.1
2013	Maersk Mc-Kinney Møller	18,270	Daewoo	399.0	59	14.5	23.0
2015	MSC Oscar	19.224	Daewoo	395.5	59	16.0	22.8

Average Draft by Containership Capacity

World Merchant Fleet, Tonnage Registered per Ship Size, 1985-2000

World Merchant Fleet, Tonnage Registered per Ship Size, 1970-2020

Evolution of the World's Containerized Carrying Capacity, 1980-2018

TEUs (Million)

World Cellular Container Fleet, 2015-2018

Tonnage by Country of Registry, 2013

Largest Countries of Ship Registry, 2020

Deadweight Tonnage

Share of Foreign-flagged Deadweight Tonnage, 1989-2021

Maritime Shipping Characteristics (to be updated)

	Tramping / Charter	Liner Shipping
	Transportation Demand	
Number of shippers	Few	Many
Quantity	Large	Small
Density	High (weight)	Low (volume)
Unit value	Low	High
Regularity	Low	High
	Transportation Supply	
Contract	Vessel	Freight (bill of lading)
Vessels	Liquid and bulk	General cargo
Frequency	Low	High
	Implications	
Freight	Liquid and main bulk commodities	Minor bulk and general cargo (containerized)
Services	Supply / demand regulation	Prior to demand
Freight elasticity	Low	Low
Main markets	Developing / developed countries	Developed / developed countries
	Share in Maritime Transport (2000)	
Tons	70%	30%
Value	20%	80%

Types of Maritime Cargo

Commodity type	Examples	Maritime Transshipment	Inland distribution
Liquid			
A) Normal pressure and temperature	Crude oil, most oil products, wine, slurried coal	Pump/pipe	Pipeline
B) Other pressure and temperature	Liquefied gases (LNG, LPG), heavy oils, latex, bitumen, vegetable oils	Pumps, temperature controlled pipelines	Temperature controlled pipelines
Dry Bulk			
A) Flowing	Grain, sugar, powders (alumina, cement)	Pneumatic / suction, conveyor, grabs	Pipes, conveyors, barge, rail wagon, lorry
B) Irregular	Coal, iron ores, non-ferrous ores, phosphate rock	Grab, conveyor	Conveyor, barge, rail wagon, lorry
Neo Bulk	Forest products, steel products, baled scrap	Lift-on/lift-off, roll-on/roll-off	Barge, rail wagon, lorry
Wheeled Units	Cars, lorries, rail wagons	Roll-on/roll-off	Rail wagon, lorry
Refrigerated/chilled cargo	Meat, fruit, dairy produce	Lift-on/lift-off	Rail wagon, lorry

Cargo, Trade and Ship Characteristics

Cargo Type	Trade Characteristics	Vessel Size		
General Cargo				
Conventional	Varied small consignments, Numerous consignees, Slow handling rates, Various routes, Numerous ports	Small		
Unitized (containers) More uniform cargo, Rapid handling, Many ports		Medium to large		
Dry Bulk				
Grain	Small to medium consignments, Varied handling rates, Many restrictive ports	Small to medium		
Ores/coal	Large consignments, Long hauls, Moderate handling rates, Specialized terminals, Few ports	Medium to very large		
Liquid				
Crude oil	Very large consignments, Long hauls, Few routes, Specialized terminals, Few ports	Very large to ultra large		
Oil products	Small shipments, Numerous consignees, Many ports	Small to medium		

World Tonnage by Cargo Vessel Type, 1970-2021 (in millions dwt)

International Seaborne Trade, 1980-2015 (millions of tons loaded)

Tons Shipped by Maritime Transportation, 1980-2005 (in millions metric tons)

Characteristics of Short Sea Shipping Services

Characteristics	Regional Short Sea Services	Feeder Services	Ferry Services
Market	Regional or intra-corporation cargo	Feeder cargo (from/to deepsea services)	Regional cargo over short distances
Frequency	Fixed schedule with low frequency	Shipping line schedule	Fixed schedule with high frequency
Service orientation	Regional loop	Transshipment hubs	Point to point
Operations	Lift-on/Lift-off (Lo/Lo); Roll-on/Roll-off (Ro/Ro)	Lift-on/Lift-off (Lo/Lo)	Roll-on/Roll-off (Ro/Ro)
Cargo type	Containers, break bulk, Ro/Ro	Containers	Trucks, trailers, passengers
Infrastructure Requirements	Shore-side cranes, warehouses and container storage areas	Shore-side cranes and container storage areas	Minimal (quays), particularly if vessels have self-sustaining ramps
Competition	Road and rail transport (if present)	Direct port calls. Ferry services.	Road and air transport (if present). Feeder services.

Characteristics of Short Sea Shipping Services

The European Short Sea Shipping Market

The North American Short Sea Shipping Market

Length of Navigable Waters and Tonnage Carried, 2006-08

Inland Waterway Traffic, Western Europe, 1970-2000 (in billion ton-kms)

Channel length (in km)

Inland Waterway Vessels Operating Costs, China 1998

Factors Impacting Maritime Shipping Networks

Inter-Range Services and Cabotage

