The Geography of Transport Systems

Applications and Case Studies – Part I (Socioeconomic Issues)

Jean-Paul Rodrigue

FIFTH EDITION

ROUTLEDGE

APPENDIX B

Copyright © 1998-2021, Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University, Hempstead, NY, 11549 USA.

Jean-Paul.Rodrigue@hofstra.edu

You may use the figures within for educational purposes only. No modification or redistribution permitted. For more information: <u>https://transportgeography.org/</u>

Usage Conditions

- DO NOT COPY, TRANSLATE OR REDISTRIBUTE THIS DOCUMENT.
- The contents of this document can be freely used for personal or classroom use ONLY.
- Although the material contained in this document is freely available, it is not public domain. Its contents, in whole or in part (including graphics and datasets), cannot be copied and published in ANY form (printed or electronic) without consent.
- If you have accessed this document through a third party (such as a content farm), keep in mind that this party is illegally redistributing this content. Please refer to the true source (<u>https://transportgeography.org/</u>) instead of the third party.
- Permission to use any graphic material herein in any form of publication, such as an article, a book or a conference presentation, on any media must be requested prior to use.
- Information cited from this document should be referred as: Rodrigue, J-P et al. (2018) The Geography of Transport Systems, Hofstra University, Department of Global Studies & Geography, <u>https://transportgeography.org/</u>.

Table of Contents

- Transportation and Mega-Urban Regions
- Transcontinental Bridges
- Transport Corridors in North America
- High Speed Trains
- Mega Airport Projects
- International Tourism and Transport
- Petroleum: A Transportation Resource

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Jean-Paul Rodrigue

Transportation and Mega-Urban Regions

Globalization and Urbanization

	Mercantile Era	Industrial Era	Contemporary Era
Technology and Processes	New transport technology: long distance ships, sextant, etc.	Steam power; Railroad; Steamships; Machine fabrication	New transport and communication technologies; Information-rich production technologies
Supporting Principles	Cartography (navigation); New means of payment (credit): precious metals, financial Innovations (accounting & banking).	Economies of scale; Vertical integration of production; Factory systems; Assembly line Labor unions; Property rights; Central banking; Currency; Monetary policies; Compulsory education.	Economies of scope ; Trade liberalization; Logistical innovations to facilitate flows of goods, services, capital, and information.
Spatial Structure	Division of labor brings increasing urbanization; Size of major cities increases.	Massive urbanization; Average town size increases; Structural issues (housing, infrastructure, spatial organization); Social issues (unemployment, health, welfare, education).	Urban regions competing globally; Relatively fast economic changes causing local dislocations; Rise of large urban regions around major cities connected to the global economy.

Mega-Region Development

Modal Corridors in Mega Regions

World's Largest Urban Regions

Urban Spatial Pattern in East Asia

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Land Use

Freight Distribution Centers along a Corridor

Articulation Node and Transport Chains

Modal Corridors in an Urban Region

The BostWash Mega Urban Region

Tokaido Megalopolis

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Transcontinental Bridges

Types of Landbridges

The North American Landbridge

Intermodal Rail Flows, 2006

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hotstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Circum-Hemispheric Rings of Circulation

The Eurasian Landbridge

The Northern East-West Freight Corridor

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Distance to New York from Eastern China (in km)

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Jean-Paul Rodrigue

Transport Corridors in North America

Monthly Value of Surface Trade between the United States, Canada and Mexico, 1993-2016 (USD)

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

The North-American Container Port System and its Multi-Port Gateway Regions

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

The European Container Port System and its Multi-port Gateway Regions

Main Container Ports, Trade Corridors and Distribution Hubs in North America

Some North American Trade Corridor Initiatives

North American Rail Freight Transport System

Market Accessibility of Major North American Freight Distribution Clusters

Transit Times from Shanghai and North American Routing Options (in Days)

Factors Impacting North American Freight Distribution in View of the Panama Canal Expansion

Factor	Impacts		
Macroeconomic factors			
Aggregate demand changes	Level and composition of cargo.		
Structure of production changes	Regionalization of production (NAFTA). Production shifts within Asia (e.g. Vietnam and Indonesia).		
Operational factors			
Economies of scale in shipping	Changes in the frequency of services, port calls and network configuration.		
Shipping costs structure (e.g. tolls and fuel)	Comparative advantages of respective routing options (landbridge, Suez, all-water).		
Competitive factors			
Response from East and West coast ports	Comparative advantages of port selection. New transshipment hubs.		
Response from railways	Comparative advantages of inland routes.		
Response from Suez Canal and transshipment hubs	Comparative advantages of routing options.		
New gateways	Additional inland routing options (e.g. Prince Rupert and Lazaro Cardenas).		

The Geography of Transport Systems

FIFTH EDITION

High Speed Trains

The Shinkansen High Speed Rail Network

Travel Times before and after the Introduction of a High-Speed Rail Service (hours)

Evolution of the French TGV, 1981-2005

Name	TGV Paris Sud-Est	TGV Atlantique	AVE	TGV Reseau	Eurostar	TGV Duplex	TGV Thalys	TGV NG
Introduction	1981	1989	1991	1993	1994	1996	1996	2005
Operating Speed	168 mph (270 km/h)	186 mph (300 km/h)	186 mph (300 km/h)	186 mph 300km/h	186 mph (300 km/h)	186 mph (300 km/h)	186 mph (300 km/h)	225 mph (360 km/h)
Design Speed	168 mph (270 km/h)	186 mph (300 km/h)	186 mph (300 km/h)	200 mph (320 km/h)	225 mph (360 km/hr)			
Speed Record	236 mph (380 km/h)	320 mph (515 km/h)	N/A	N/A	N/A	N/A	N/A	N/A
Maximum speed on normal railways	138 mph (220 km/h)	138 mph (220 km/h)	No running	138 mph (220 km/h)	100 mph (160 km/h)	No running	unknown	156 mph (250 km/h)
Comments	Famous Orange TGV	Rail Speed Record	TGV for Spain	Pressure Sealed	Strictly not a TGV	Double decker	International TGV	Next Generation

Breakeven Distances between Conventional Rail, High Speed Rail and Air Transportation

Modal Share before and after the Introduction of High-Speed Rail

Under construction

The Socioeconomic Context of High Speed Rail

Criteria	Issues
Goals	Mitigate congestion and demand along high density interurban corridors. Extending services into lower density regions for political purposes (e.g. social equity) lead to economic failure.
Spatial Structure	Limited impacts on the spatial structure. Routes supporting the existing spatial structure are the most effective. Limited number of stations that are well connected to their metropolitan areas most effective. HSR stations should be hubs of regional transport systems.
Investments	Very high construction and operation costs. Land (expropriation costs) are particularly high to secure a corridor. Cost overruns common. Limited or no profitability. Most costs are usually subsidized.
Demand	Significant time savings compared to existing services. Initial increase in the demand, but a stabilization after 2 years. Lower demand than forecasted common. Significant impacts on air services on distances less than 700km. Low cost airlines able to compete.
Economic Impacts	Little or no generation of new economic activities. Service and touristic sectors favored. Tendency to consolidate activities in the most connected locations (large cities). Medium-sized cities usually negatively impacted.
Environmental Impacts	Comparatively better than air transportation. Long term mitigation of environmental impacts during construction.

FIFTH EDITION

ROUTLEDG

Jean-Paul Rodrigue

Mega Airport Projects

Surface of the World's Largest Airport Terminals

Passenger Density of the World's Largest Airports (In Passengers per Hectare)

Passengers Traffic, DFW, HKG and KIX, 1982-2016

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Freight Traffic, DFW, HKG and KIX, 1982-2016

Hong Kong Chek Lap Kok Terminal

Dallas/Fort Worth International Airport

Kansai International Airport

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Jean-Paul Rodrigue

International Tourism and Transport

International Tourists Arrivals and Receipts, 1950-2019

Monthly International Tourist Arrivals, 2011

Share of International Tourist Arrivals by Region, 1950-2015

International Tourists Arrivals, 2018

Destination Cities by International Overnight Visitors, 2018

The Passport Index, 2011, 2018

The Geography of Transport Systems

FIFTH EDITION

Petroleum: A Transportation Resource

OPEC Members and Countries with more than 10 Billion Barrels of Oil Reserves

Products Made from a Barrel of Crude Oil

United States Strategic Petroleum Reserves, 1977-2016

Share of OPEC and the Persian Gulf of the World Crude Oil Production, 1960-2016

Major Oil Price Fluctuations

Price Change Event	Price Change Time Frame	Cause	Nominal Price Change
First Oil Shock	October 1973 to March 1974	Yom Kippur War / OPEC oil embargo	From \$4.31 to \$10.11 (+134.5%)
Second Oil Shock	April 1979 to July 1980	Iranian revolution (1978) / Iran-Iraq war (1980)	From \$15.85 to \$39.50 (+149.2%)
Oil counter shock (A)	November 1985 to July 1986	OPEC oversupply / Lower demand	From \$30.81 to \$11.57 (-62.4%)
First Gulf War (1)	July 1990 to November 1990	Iraqi invasion of Kuwait	From \$18.63 to \$32.30 (+73.4%)
Asian Financial Crisis (B)	January 1997 to December1998	Debt defaults / Non-USD currency devaluations / Reduced demand	From \$25.17 to \$11.28 (-55.1%)
"Asian Demand Contagion" (2)	January 1999 to September 2000	Rising demand / OPEC output cutbacks	From \$11.28 to \$33.88 (+200.3%)
"September 11 Effect" (C)	August 2001 to December 2001	Oversupply / American recession	From \$27.47 to \$19.33 (-29.6%)
Third Oil Shock	December 2003 to June 2008	Peak oil / Rising demand / Monetary debasement / Speculation	From \$32.15 to \$133.95 (+316.6%)
Financial Crisis of 2008 (D)	July 2008 to February 2009	Collapse of asset bubbles / Demand destruction / Global recession	From \$133.95 to \$39.16 (-70.7%; Dec 2008)

Nominal and Real Oil Price, 1870-2016 (Dollars per Barrel)

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Nominal Price of Oil and Major Disruptions in World Oil Supply, 1950-2016

Exhibit 7: History indicates that assuming shale/OPEC can meet demand, oil prices likely need to stay lower for longer

Source: BP Statistical Review of World Energy, Goldman Sachs Global Investment Research

Costs of Finding Oil, 1977-2007

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Costs of finding oil (\$ per barrel)

Cost of Finding Oil, 1981-2006

World Oil Production, 1965-2016 (1000s of barrels per day)

World Oil Consumption, 1965-2016 (1000s of barrels per day)

World Oil Balance, 1965-2016 (1000s of barrels per day)

Reserves and Total Resources

Types of Oil and Gas Reserves

Proved Reserves of Natural Gas

Estimated Oil Reserves, Selected OPEC Countries, 1980-1991 (billions of barrels)

Proven Oil Reserves, 1980-2016 (thousand million barrels)

World's Largest Oil Fields, 2005

Oil Field	Output (MBD)	% of national output	Status
Ghawar (Saudi Arabia)	4.5	40%	Possibly declining
Cantarell (Mexico)	2.0 (1.7; 2007, 1.04; 2008)	60%	Declining
Burgan (Kuwait)	1.7	68%	Declining
DaQing (China)	1.0	40%	Possibly declining

Oil Production of Some Declining Regions, 1973-2016

Remaining Proven Oil Reserves for "Middle Eastern Five" According to Major Assessors, 2005

Global Oil Production, 1924 (1,000s of barrels per day)

Petroleum Production, Consumption and Imports, United States, 1949-2018

Modes Used for Petroleum Transportation

	Pipeline	Marine	Rail	Truck
Volumes	Large	Very large	Small	Large
Materials	Crude / Products	Crude / Products	Products	Products
Scale	2 ML+	10 ML+	100 kL	5-60 kL
Unit costs	Very low	Low	High	Very high
Capital costs	High	Medium	Low	Very low
Access	Very limited	Very limited	Limited	High
Responsiveness	1-4 weeks	7 days	2-4 days	4-12 hours
Flexibility	Limited	Limited	Good	High
Usage	Long haul	Long haul	Medium haul	Short haul

Main Origin of Crude Oil Imports, United States, 1973-2016 (in thousands of barrels per day)

Inter-Regional Petroleum Movements, 2006

Middle East / Singapore Middle East / China Mexico / USA West Africa / USA North Africa / Europe Middle East / USA Canada / USA Sout America / USA Middle East / Europe Middle East / Japan Russia / Europe Middle East / Other Pacific Asia 3000 6000 7000 0 1000 2000 4000 5000 Thousands of Barrels per Day

Net Oil Imports from the Persian Gulf Region as % of Total Net Oil Imports, 1982-2002

Export Land Theory

Crude Oil Production and Consumption, China, 1980-2016 (in 1,000 of barrels per day)

Copyright © 1998-2020, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Factors of Oil Dependency

Occurrence	Localized large deposits (decades)
Transportability	Liquid that can be easily transported. Economies of scale
Energy content	High mass / energy released ratio
Reliability	Continuous supply; geopolitically unstable
Storability	Easily stored
Flexibility	Many uses (petrochemical industry; plastics)
Safety	Relatively safe; some risks (transport)
Environment	Little wastes, CO2 emissions
Price	Relatively low costs

Alternatives to the Strait of Hormuz, 2013

World Gas Trade

LNG Exporters, 2003

