

The Geography of Transport Systems

Methods in Transport Geography

Jean-Paul Rodrigue

FIFTH EDITION

APPENDIX A

Copyright © 1998-2021, Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University, Hempstead, NY, 11549 USA.

Jean-Paul.Rodrigue@hofstra.edu

You may use the figures within for educational purposes only. No modification or redistribution permitted. For more information: <u>https://transportgeography.org/</u>

Usage Conditions

- DO NOT COPY, TRANSLATE OR REDISTRIBUTE THIS DOCUMENT.
- The contents of this document can be freely used for personal or classroom use ONLY.
- Although the material contained in this document is freely available, it is not public domain. Its contents, in whole or in part (including graphics and datasets), cannot be copied and published in ANY form (printed or electronic) without consent.
- If you have accessed this document through a third party (such as a content farm), keep in mind that this party is illegally redistributing this content. Please refer to the true source (<u>https://transportgeography.org/</u>) instead of the third party.
- Permission to use any graphic material herein in any form of publication, such as an article, a book or a conference presentation, on any media must be requested prior to use.
- Information cited from this document should be referred as: Rodrigue, J-P et al. (2020) The Geography of Transport Systems, Hofstra University, Department of Global Studies & Geography, <u>https://transportgeography.org/</u>.

Table of Contents

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Jean-Paul Rodrigue

An Overview of Methods in Transport Geography

Models in Transport Geography

Taxonomy of Transport Geography Methods

٠

٠

- Network Analysis (Graph Theory). Cartog
- Land Use / Transportation Interactions.
- Flow/Location Allocation Models.
- The Four-Stage Urban Transportation Model.
- Travel / Traffic Surveys.

- Cartography / Geographic Information Systems.
- Descriptive Statistics, (e.g. Gini Coefficient).
- Questionnaires / Interviews.
- Big data.
- Graphs and Charts.
- Inferential Statistics.
- Impact Assessment.
- Risk Assessment.
- Policy Analysis.

Copyright © 1998-2021, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

Multidisciplinary

The Geography of Transport Systems

FIFTH EDITION

Graph Theory: Definition and Properties

Graph Representation of a Real Network

Basic Graph Representation of a Transport Network

Planar and Non-Planar Graphs

Simple and Multigraph

Connections and Paths

Length of a Link, Connection or Path

Cycles and Circuits

Ego Network

Nodal Region

Dual Graph

Connectivity in a Graph

Complementary Graph

Root Node

Tree Graph

Articulation Node

Isthmus Connection

The Geography of Transport Systems

FIFTH EDITION

Graph Theory: Indexes and Measures

Diameter of a Graph

Sh	Shimbel Distance							
v	1	2	3	4	5	6	7	
1	0	1	1	2	2	1	3	
2	1	0	2	1	3	2	4	
3	1	2	0	3	1	2	2	
4	2	1	3	0	2	1	3	
5	2	3	1	2	0	1	1	
6	1	2	2	1	1	0	2	
7	3	4	2	3	1	2	0	

Changes in the Diameter of a Graph

Number of Cycles in a Graph

u = e - v + p

	е	V	р	u
Α	ვ	5	2	0
В	5	5	1	1
С	5	4	1	2
D	7	6	1	2

Cost

A - Original network and weighted links

B - Minimum Spanning Tree (MST)

C - Greedy triangulation (GT)

	Cost (weight)	Cost (links)
А	360	18
В	145	11
С	480	29
CostRel	0.642	0.389

Hierarchy

Transitivity

Order of a Node

Pi Index and the Shape of Transportation Networks

Eta Index

	L(G)	е	Eta
Α	80 km	5	16.0
В	80 km	7	11.4

Theta Index

lota Index

Beta Index

Alpha Index

Gamma Index

Under construction

The Geography of Transport Systems

FIFTH EDITION

Geographic Information Systems for Transportation (GIS-T)

Geographic Information Systems and Transportation

GIS Data Models

Space / Time GIS

GIS in the Value Chain

Inbound Logistics	Optimization of warehouse usage; logistics modeling
Sales and Marketing	GIS as a market analysis tool; simulation of dispersion of new products; target marketing and advertising
Services	Route planning; dealer network maintenance; customer complaints; dispatch; maintenance forecasting
Operations	Enhancing the spatial content of process or product
Outbound Logistics	Route planning; fleet management; delivery assessment

The Geography of Transport Systems

FIFTH EDITION

Jean-Paul Rodrigue

Transportation and Accessibility

Relationship between Distance and Opportunities

Topological and Contiguous Accessibility

Accessibility and Spatial Structure

Simple Connectivity Matrix

More Complex Connectivity Matrix

Total Accessibility Matrix (T-Matrix)

			•				
	Α	В	C	D	Ε	Σ	
Α	3	2	3	2	1	11	
В	2	2	2	2	1	9	
С	3	2	4	2	1	12	=
D	2	2	2	2	1	9	
Ε	1	1	1	1	1	5	
Σ	11	9	12	9	5	46	

62						
	Α	В	С	D	Ε	
Α	3	1	2	1	1	
В	1	2	1	2	1	_
С	2	1	4	1	0	÷
D	1	2	1	2	1	
Ε	1	1	0	1	1	

UI UI					
	Α	В	С	D	Ε
Α	0	1	1	1	0
В	1	0	1	0	0
C	1	1	0	1	1
D	1	0	1	0	0
E	0	0	1	0	0

Shimbel Distance (D-Matrix)

Valued Graph (L-Matrix)

L1					
	А	В	С	D	Е
А	0	10	7	12	∞
В	10	0	5	∞	∞
С	7	5	0	11	7
D	12	∞	11	0	∞
Е	œ	∞	7	œ	0

Geographic Accessibility

		-			
	Α	В	С	D	Ε
Α	0	8	4	9	15
В	8	0	7	12	18
С	4	7	0	5	11
D	9	12	5	0	6
Ε	15	18	11	6	0

A(G)

			. ,			
	А	В	С	D	E	Σ /n
Α	0	8	4	9	15	7.2
В	8	0	7	12	18	9.0
С	4	7	0	5	11	5.4
D	9	12	5	0	6	6.4
E	15	18	11	6	0	10.0
Σ /n	7.2	9.0	5.4	6.4	10.0	38.0

Potential Accessibility

	Α	В	С	D	Ε
Α	0	8	4	9	15
В	8	0	7	12	18
С	4	7	0	5	11
D	9	12	5	0	6
Е	15	18	11	6	0

	Р			
Α	1200			
В	900			
С	1500			
D	600			
Е	800			

P(G)

i\j	Α	В	C	D	E	∑i
Α	1200.0	150.0	300.0	133.3	80.0	1863.3
В	112.5	900.0	128.6	75.0	50.0	1266.1
С	375.0	214.3	1500.0	300.0	136.4	2525.7
D	66.6	50.0	120.0	600.0	100.0	936.6
E	53.3	44.4	72.7	133.3	800.0	1103.7
Σj	1807.4	1358.7	2121.3	1241.6	1166.4	7695.4

FIFTH EDITION

ROUTLEDG

The Route Selection Process

The Traveling Salesperson Problem

Effect of Topography on Route Selection

Effect of Transport Costs on Route Selection

Cost Minimization and Efficiency Maximization in Route Selection

The Geography of Transport Systems

FIFTH EDITION

Network Data Models

The ESRI Shapefile Model

Topology of a Network Data Model

Cartography of a Network Data Model

Geocoding in a Network Data Model

Routing in a Network Data Model

Relational Database Representation of a Simple Network

Nodes					
ID	Lat	Long			
Α	40.42345	-75.1245			
В	40.31021	-75.2510			
С	40.41882	-74.9124			
D	40.25908	-75.0031			
Е	40.28990	-74.7893			

Creation of a Connectivity Matrix with a Link Table

Turn Penalties at an Intersection

Turn Penalty Table – Node A		
From	То	Penalty
1	2	2
2	1	1
1	3	0
3	1	0
1	4	1
4	1	2
2	3	2
3	2	1
2	4	0
4	2	0
3	4	-1
4	3	1

Object-Oriented Network Model

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Symbolization of Transport Features in a GIS

Visual Resources

Category Ranges

Visual Resources and Geographical Features

Visual Resources

Major Map Elements

Balancing the Importance of Graphic Elements

Symbolization of Transport Features

Copyright © 1998-2021, Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. For personal or classroom use ONLY. This material (including graphics) is not public domain and cannot be published, in whole or in part, in ANY form (printed or electronic) and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

The Geography of Transport Systems

FIFTH EDITION

Traffic Assignment

Traffic Assignment Problem

Spatial Interactions and Traffic Assignment

Two Perspectives for Considering Traffic

Heuristic Method for Traffic Maximization

Maximum Possible Traffic between A and F

Heuristic Method for Costs Minimization

Types of Traffic Costs

Traffic Cost Functions

Morphology, Urban Transportation and OR

The Geography of Transport Systems

FIFTH EDITION

Technical Performance Indicators

Technical Performance Indicators

Indicator	Passenger	Freight	Description
Passenger / freight density	passenger-km / km	ton-km / km	A standard measure of transport efficiency.
Mean distance traveled	passenger-km / passenger	ton-km / ton	A measure of the ground covering capacity of networks and different transport modes.
Mean per capita ton output (freight) Mean number of trips per capita (passenger)	passengers / population	tons / population	Used to measure the relative performance of transport modes.
Mean load factor	number of passengers aboard / total carrying capacity (%)	actual load (ton) / overall load capacity (ton) (%)	Particularly useful with increasing complexity of logistics associated with containerization of freight (i.e. of empty returns). Can also be used to measure transit ridership.

Common Economic Impact Indicators					
Factors of production	Scale-specific indicators				
	Micro	Macro			
Output / Capital	Transport sector income / Local income	Output / GDP			
Output / Labor	Output / Local incomo				
Capital / Labor					

Continuous and Discontinuous Traffic

Levels of Service for Road Transportation (Vehicle per Lane per Hour)

Causes of Road Transportation Bottlenecks

Critical Density and Critical Speed

Under Construction

Copyright © 1998-2021, Dr. Jean-Paul Rock grant and on any media without consent. This includes conference presentations. Permission MUST be requested prior to use.

The Geography of Transport Systems

FIFTH EDITION

The Gini Coefficient

The Lorenz Curve

Traffic Concentration and Lorenz Curves

Lorenz Curves of the World's 50 Largest Container Ports, Passenger Airports and Freight Airports, 2010

Lorenz Curves of the World's 50 Largest Container Ports, Passenger Airports and Freight Airports, 2010 (Greyscale)

World's 50 Largest Container Ports, Passenger Airports and Freight Airports, 2010

Lorenz and Perfect Inequality Differences

Calculation of the Index of Dissimilarity

$$ID = 0.5 \sum_{i=1}^{N} |X_i - Y_i| = 0.325$$

X (% of terminals)	Y (% of traffic)	X - Y	
0.10	0.25	0.15	
0.10	0.20	0.15	
0.10	0.15	0.05	
0.10	0.10	0.00	
0.10	0.08	0.02	
0.10	0.07	0.03	
0.10	0.05	0.05	
0.10	0.05	0.05	
0.10	0.03	0.07	
0.10	0.02	0.08	
1.0	1.0	0.65	

Calculation of the Gini Coefficient

$$G = 1 - \sum_{i=1}^{N} (\sigma Y_{y-1}) (\sigma X_{i-1} - \sigma X_i) = 0.392$$

Y	σX (Cumulative)	σY (Cumulative)	$\sigma Y_{i-1} + \sigma Y_i(A)$	$\sigma X_{i-1} - \sigma X_i$ (B)	A*B
0.25	0.10	0.25	0.25	0.10	0.025
0.20	0.20	0.45	0.70	0.10	0.070
0.15	0.30	0.60	1.05	0.10	0.105
0.10	0.40	0.70	1.30	0.10	0.130
0.08	0.50	0.78	1.48	0.10	0.148
0.07	0.60	0.85	1.63	0.10	0.163
0.05	0.70	0.90	1.75	0.10	0.175
0.05	0.80	0.95	1.85	0.10	0.185
0.03	0.90	0.98	1.93	0.10	0.193
0.02	1.00	1.00	1.98	0.10	0.198
1.00					1.392

FIFTH EDITION

ROUTLEDGE

Jean-Paul Rodrigue

Linear Programming

Basic Linear Programing Objective Function

Min:
$$\sum_{a} \sum_{b} g(Q(a, b))$$
 subject to
 $Q(a, b) \ge 0$

Graphic Formulation of the Distribution Problem

Graphic Solution of the Distribution Problem

Linear Inequalities

Optimal Solution

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Jean-Paul Rodrigue

Spatial Interactions and the Gravity Model

Conditions for the Realization of a Spatial Interaction

Representation of a Movement as a Spatial Interaction

Constructing an O/D Matrix

O/D Matrix

Α	В	C	D	Ε	Ti
0	0	50	0	0	50
0	0	60	0	30	90
0	0	0	30	0	30
20	0	80	0	20	120
0	0	90	10	0	100
20	0	280	40	50	390
	A 0 0 20 20 20	AB000000200200200	ABC00500060000200800090200280	ABCD005000060000030200800200901020028040	ABCDE0050000600303000030302008002000901002002804050

Relationship between Distance and Interactions

Three Basic Interaction Models

Application of an Elementary Spatial Interaction Equation

Application of a Simple Spatial Interaction Equation

Effects of beta, alpha and lambda on Spatial Interactions

Chicago's Beta Values for Air Transportation, 1949-1989

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Jean-Paul Rodrigue

Transportation / Land Use Modeling

Modeling Transportation / Land Use Relationships (under construction)

Components of the Transportation / Land Use System

Four-Stages Transportation / Land Use Model

Measuring the Transportation / Land Use System

Lowry-Type Transportation / Land Use Model

Integrated Land Use and Transportation Package

MEPLAN Transportation / Land Use Model

The Geography of Transport Systems

FIFTH EDITION

The Lowry Model

The Lowry Model

The Geography of Transport Systems

FIFTH EDITION

Evaluating Urban Transportation Quality

Roadway Levels of Service

Maximum Traffic Volumes Per Level of Service (Passenger Cars Per Hour Per Lane)

Costs of Motor Vehicle Use in the U.S., 2000

Components of the MOBILE Emission Model

Inputs and Outputs of the MOBILE Emission Model

The Geography of Transport Systems

FIFTH EDITION

Market Areas Analysis

Market Threshold and Range

Market Size and Threshold

Market Profitability

The Optimal Shape of a Market Area

Non-Isotropic Conditions and the Shape of Market Areas

Supply, Demand and Equilibrium Price

Derivation of a Market Area from a Supply / Demand Equilibrium

Demand Cone

Transport Costs and Market Areas

Conventional Distance Decay Curves for Retail Activities

Hotelling's Principle of Market Competition

Reilly's Law

Reilly's Law and Market Areas

Huff's Law

Location of Distribution Centers and Market Areas According to Response Time

GIS Methods to Estimate Market Areas

The Geography of Transport Systems

FIFTH EDITION

ROUTLEDG

Cost / Benefit Analysis

Inaccuracy of Transportation Project Cost Estimates by Type of Project

Cost and Benefit Overruns Ratios by Type of Infrastructure Project

The Geography of Transport Systems

FIFTH EDITION

Transportation Environmental Management

Environmental Practices

What are the environmental components the logistics activities of the firm?

Link environmental components with regulations

What is the regulatory standing of each environmental component?

Assess risks, impacts and responsibilities

What are the risks of doing nothing? What are the rewards of improvements?

Identify environmental issues to be addressed

What are the most important issues to be addressed and their priority?

Develop commercial strategies

Which improvements can be implemented in management and operations?

_
X — I

Introduce best practices

How improvements can be implemented?

Undertake monitoring and auditing

What is the effectiveness of the best practices and which adjustments are required?

The Implementation of an Environmental Management System

Environmental Review

Direct Environmental Aspects

Air emissions

Water emissions

Waste

Material use (resources and raw materials) Local emissions (noise, odors, vibrations) Land use

Risks of environmental accidents

Indirect Environmental Aspects

Product life cycle Capital investments Insurance Management and planning process Environmental management of suppliers

Environmental Management System Process General requirements Environmental policy Planning Implementation and operation Internal Audit and Review Environmental Statement

Verification and Validation

Registration

Environmental Management System for Ports and Maritime Shipping

